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Abstract – The far-field characteristics of mid-infrared interband cascade laser frequency combs with different ridge widths 

are studied. We find that narrow-ridge devices that suffer from pronounced modal leakage exhibit anomalous deterioration of 

the vertical far-field profile, with periodically-occurring fringes. 

I. Introduction 

Interband cascade lasers (ICLs) have emerged as unique chip-scale mid-infrared sources for optical frequency 

combs (OFCs) that emit in the 3–4 µm wavelength region with sub-watt room-temperature power 

consumption [1]–[3]. They have already shown excellent suitability for broadband and high-resolution molecular 

spectroscopy. Moreover, the same ICL structure can serve as a fast, room-temperature photodetector with GHz 

bandwidth, which provides all-room-temperature dual-comb spectroscopy [4] and paves the way for fully-

integrated on-chip sensors with source and detector defined photolithographically on the same chip [5]. 

However, current ICL OFCs operate with limited optical bandwidths accompanied by uneven spectral envelopes. 

Furthermore, at higher injection currents they often suffer from quasiperiodic mode grouping, which is 

potentially attributable to a mode leakage phenomenon that plagues a variety of semiconductor laser 

platforms [6], [7]. Because the ICL’s modal index is lower than the refractive index of the GaSb substrate, the 

lasing mode can leak through an insufficiently-thick clad layer into the high-index substrate, and reflect from the 

bottom contact. This leads to multiple interference effects, such as modulation of the gain spectrum and rapid 

oscillation of the group velocity dispersion. Here we show that mode leakage can also severely degrade the far-

field characteristics of an ICL comb.  

II. Results 

Figure 1 shows the far-field intensity profiles and emission spectra for a typical 4.6-µm-wide Fabry-Pérot ICL 

ridge biased below (top) and above (bottom) threshold. The far-field characteristics were measured using a 

custom 2-axis rotation stage assembly with a nitrogen-cooled MCT photodetector mounted on a 20-cm-long arm.  

 
Fig. 1. Full far-field profiles (left), horizontal and vertical beam cross-sections (center), and emission spectra (right), for a 4.6- µm-wide ridge 

measured below (top row), and above (bottom row) threshold. The optical spectra were measured by a Fourier transform spectrometer 

(FTIR), and the horizontal angle is limited on the negative side due to mechanical constraints of the stage assembly.  
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Lock-in power detection ensured a high signal-to-noise ratio for the angle-resolved measurement. Overall, 

smooth Gaussian-like far-field profiles are observed both below and above threshold, with divergence angles 

approximately 51º and 77º for the slow and fast axes, respectively. The electroluminescence (EL) spectrum is 

seen to remain single-lobed, just like the optical spectrum above threshold. 

However, the spectra and far-field characteristics change dramatically when a narrower sister device with ridge 

width 3.6 µm is measured (Fig. 2). First, horizontal ripples appear in the below-threshold far-field image, and 

become even more pronounced in the above-threshold scan. The inset in the bottom row shows a higher-

resolution (sub-degree) scan of the central region. We find that whereas the horizontal profile (parallel to the 

epitaxial layers) is relatively smooth, the central part of the vertical profile (perpendicular to the epitaxial layers) 

oscillates rapidly with 2º period. This is most likely an interference effect related to the modal leakage 

phenomenon, which clearly induces spectral modulation and mode grouping in the EL and lasing spectra. It is 

unlikely that fringing effects due to Fresnel reflections at optical interfaces of the photodetector are responsible, 

since more than a dozen devices were tested in the same setup and many had perfectly smooth far-field profiles.  

 
Fig. 2. Full far-field profiles (left), horizontal and vertical beam cross-sections (center), and emission spectra (right) for a 3.6-µm-wide ridge 

measured below (top row), and above (bottom row) threshold. 

It should also be noted that higher-order lateral modes, which could provide a plausible alternative explanation 

for the poor beam characteristics and spectral splitting in general, become noticeable in the far-field profiles and 

optical spectra only at ridge widths > 6 µm, and only at extreme injection currents (> 8×Jth) [7]. They manifest as 

nulls around the beam center and additional lines in the optical spectrum, which are not observed for the 

narrowest-ridge device reported here. On the other hand, a narrow waveguide pushes the optical mode toward 

the substrate [7], which exacerbates the modal leakage phenomenon and explains the differences between Figs. 1 

and 2. Furthermore, an even narrower ridge with width 2.5 µm exhibited even greater distortion of the beam 

profiles along with anomalies in the L-I-V characteristics. While modal leakage effects appear to qualitatively 

explain the observed far-field profiles and spectra, the origin and period of the regularly-spaced fringes 

appearing in Fig. 2 should be investigated further.  
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