

NLPQT Closing Conference 19/10/2023

Battery-operated mid-infrared diode laser frequency combs

Lukasz A. Sterczewski,^{1,2}

¹Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland ²Previously: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

© 2023. All rights reserved.

Contributors

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Mahmood Bagheri, Clifford Frez, Siamak Forouhar

Molecular sensing – need for broadband measurements

Broadband sources for spectroscopy

Why frequency combs if single-mode lasers work well?

Single-mode laser is sufficient – single line can be isolated (a few cm⁻¹ tunability) Comb becomes necessary – broad features would be difficult to probe with ~cm⁻¹ tunability

298.1 K, atmospheric pressure, HITRAN ABS 2019 database

5

Novel sources for comb spectroscopy

Type-I quantum well diode laser combs

- ► Up to **20 mW** of CW power at <1 W of power consumption
- ► ~1 THz spectral coverage, 10 GHz repetition rate
- Self-starting comb emission without any microwave generators
- ► Native emission in the 1.5-3 µm wavelength region
- Lockable to frequency standards

Inclusive frequency comb definition

Frequency of each line defined by two parameters: global offset and repetition rate

Diode laser combs - LIV

Diode laser combs – spectral characterization

Semiconductor laser optical frequency combs

Comb operation enabled by multimode operation (spatial hole burning) + nonlinearity (four-wave mixing)

Linearly swept FM source - approximation

Linearly swept FM source – more accurate picture

Original SWIFTS characteristics

A pair of devices

Dual-comb spectroscopy

Dual-comb spectroscopy

Optical multi-heterodyne

Optical spectrum Wavenumber (cm⁻¹) Wavenumber (cm⁻¹)

Optical multi-heterodyne

Optical multi-heterodyne

Mid-IR QCLs: Villares et al. Nat. Comm. 5 (2014)

Battery-operated MIR dual-comb source

L. A. Sterczewski, et al., "Battery-operated mid-infrared diode laser frequency combs," Laser & Photonics Reviews 17, 2200224 (2023).

Vol. 17 January 2023

LASER &PHOTONICS REVIEWS

L. A. Sterczewski, et al., "Battery-operated mid-infrared diode laser frequency combs," *Laser & Photonics Reviews* **17**, 2200224 (2023).

 WILEY
 VCH
 Battery-Operated Mid-Infrared Diode Laser Frequency Combs

 Lukasz A. Sterczewski, Mathieu Fradet, Clifford Frez, Siamak Forouhar, Mahmood Bagheri
 Siamak Forouhar, Mahmood Bagheri

www.lpr-journal.org

Multi-wavelength tunable laser spectroscopy

Pure CH₄, HITRAN simulation parameters *T*: 293 K, *P*: 0.1 atm (76 Torr) – for display visualization purposes

Tuning over a full free spectral range

Parasitic external cavity

Multi-wavelength tunable laser spectroscopy

High resolution spectroscopy at 3 μ m – C₂H₂

¹²C₂H₂, 10 Torr

- First mid-infrared (3 µm) diode laser frequency combs. Ultra-low power consumption enables battery-operated dual-comb spectrometers.
- Suitability for mechanical high-resolution Fourier transform spectrometers.
- ► Future exploitation of intracavity nonlinearities for frequency conversion.

Acknowledgments

Jet Propulsion Laboratory

California Institute of Technology

This work was supported under National Aeronautics and Space Agency's (NASA) PICASSO program & PDRDF program. It was in part performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the NASA.

Universities Space Research Association

L. A. Sterczewski's research was supported by an appointment to the NASA Postdoctoral Program at JPL, administered by Universities Space Research Association under contract with NASA.

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101027721.

New chapter

European Research Council

Established by the European Commission

TeraERC

Chip-based room-temperature terahertz frequency comb spectrometers (1 500 000 EUR).

lukasz.sterczewski@pwr.edu.pl

Wrocław University of Science and Technology

Modal leakage – well known challenge for GaSb devices

Gain and dispersion

